
Formation of a giant component in the intersection graph of a random chord
diagram
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Abstract

We study the number of chords and the number of crossings in the largest component of a random chord diagram

when the chords are sparsely crossing. This is equivalent to studying the number of vertices and the number of edges

in the largest component of the random intersection graph. Denoting the number of chords by n and the number

of crossings by m, when m/(n log n) tends to a limit in (0, 2/π2), we show that the chord diagram chosen uniformly

at random from all the diagrams with given parameters has a component containing almost all the crossings and

a positive fraction of chords. On the other hand, when m ≤ n/14, the size of the largest component is of order

O(log n). One of the key analytical ingredients is an asymptotic expression for the number of chord diagrams with

parameters n and m for m < (2/π2)n log n, based on the Touchard-Riordan formula and the Jacobi identity for the

generating function of Euler partition function.
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1. Introduction

A chord diagram of size n is a pairing of 2n points. It is customary to place the 2n points on a circle in general

position, label them 1 through 2n clockwise, and connect the two points in the pairing with a chord. Alternatively,

we can represent a chord diagram by putting the numbers {1, . . . , 2n} on a line in increasing order and connecting

the pairs of a chord diagram by an arc; we call it a linearized chord diagram. For an illustration, see Figure 1.
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Figure 1: A circular and a linearized chord diagram. They are equivalent to each other.
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Chord diagrams appear in various contexts in mathematics, especially in topology. For instance, Chmutov and

Duzhin [19], Stoimenow [46], Bollobás and Riordan [13], and Zagier [48] used chord diagrams to bound the dimension

of the space of order n Vassiliev invariants in knot theory. Rosenstiehl [43] gave a characterization of Gauss words

in terms of the intersection graphs of the chord diagrams.

As another application, consider an oriented surface obtained by taking a regular 2n-gon and gluing the edges

pairwise with opposite directions. Each such gluing defines a chord diagram; simply interpret the glued edges of the

2n-gon as pairs of endpoints of chords. In this topological context, it is natural to ask what the genus of a given chord

diagram is. A remarkable formula for the generating function of the double sequence cg(n) was found by Harer and

Zagier [30]; here cg(n) denotes the number of chord diagrams with n chords and genus g. Recently the second author

found a relatively simple proof of the Harer-Zagier formula, [39]. Linial and Nowik [33] found the asymptotic likely

value of the genus of the chord diagram chosen uniformly at random. Subsequently, Chmutov and Pittel [20] proved

that, as n→∞, the genus of the random chord diagram is asymptotic to the Gaussian random variable with mean

n/2 and variance 1
4 log n. Recently Chmutov and Pittel [21] proved a similar result for the random surface obtained

by gluing, uniformly at random, several polygonal discs with various numbers of sides. The case of discs with the

same number of sides had been studied by Pippenger and Schleich [36], Gamburd [29], Fleming and Pippenger [28].

For detailed information about the chord diagrams and their topological and algebraic significance we refer the reader

to Chmutov, Duzhin, and Mostovoy’s book [18].

A chord diagram of size n can be thought of as a fixed-point-free involution of a set of 2n numbers. Baik and

Reins [8] found the asymptotic distribution of the length of the longest decreasing subsequence of a random fixed-

point-free involution. Chen et al. [17] showed that the crossing number and the nesting number of linearized chord

diagrams have a symmetric joint distribution. Since the lack of a decreasing subsequence of length 2k + 1 in an

involution is equivalent to the lack of (k + 1)-nesting in the corresponding chord diagram, the result of Baik and

Reins, combined with the result of Chen et al., gives the distribution for the maximum number of chords, all crossing

each other, when the chord diagram is chosen uniformly at random.

In random graph theory, Bollobás and O. Riordan [12] used the random linearized chord diagrams to provide a

precise description of the preferential attachment random graph model introduced by Barabási and Albert [9].

It is easy to see that there are (2n − 1)!! chord diagrams of size n. However, enumerating chord diagrams with

special properties could become hard rather quickly. A classic example is counting chord diagrams with a given

number of crossings. This problem was first studied by Touchard [47], who found a bivariate generating function for

Tn,m, the number of chord diagrams of size n with m crossings. To this end, he considered an equivalent problem of

enumerating the linearized diagrams by crossings: the 2n points are distributed on a straight line, and are connected

in pairs by n concave arcs, all above the line; the crossings of these arcs correspond to the crossings of chords on the

circle. Later, J. Riordan [41] used Touchard’s formula to extract the remarkable explicit formulas for
∑
m q

mTn,m,

and Tn,m itself. However, the latter is in the form of an alternating sum, indispensable for moderate values of m and

n, but not easily yielding an asymptotic approximation for Tn,m for n,m → ∞. (We refer the reader to Aigner [4]

for an eminently readable exposition of the Touchard-Riordan achievement.) A quarter century later, Flajolet and

Noy [27] were able to use J. Riordan’s formula for the univariate
∑
m q

mTn,m to show that the number of crossings

in the uniformly random chord diagram is asymptotically Gaussian. Cori and Marcus [22] counted the number of

isomorphism classes of chord diagrams, with two chord diagrams being isomorphic if they are rotationally equivalent.

Another way to represent a chord diagram D is to associate with it a graph GD, called the intersection graph

of D. The vertices of GD are the chords of D and there is an edge between two vertices in GD if and only if the

corresponding chords cross each other in D, see Figure 2. If, instead of labeling the endpoints of the chords, we label

the chords from 1 to n in an arbitrary way, we obtain a labeled circle graph. Circle graphs are interesting in their

own right and they have been studied widely. A characterization of circle graphs was given by Bouchet [15]. (Still,

as Arratia et al. [7] pointed out in a lucid discussion, even a formula, exact or asymptotic, for the number of circle

graphs remains unknown.)

A chord diagram D is connected if there is no line cutting the circle that does not intersect any of the chords

and partitions the set of chords into two nonempty subsets. In other words, D is connected if and only if GD is

connected.
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Figure 2: Intersection graph of the chord diagram given in Figure 1.

By making use of recurrence relations, Stein and Everett [45] proved that, as n tends to infinity, the probability

that a random chord diagram with n chords is connected approaches 1/e. Later, Flajolet and Noy [27] proved that

almost all chord diagrams are monolithic, i.e. consist of a single giant component and a number of isolated chords.

Having proved that in the limit the number of isolated chords was Poisson(1), they recovered Stein and Everett’s

result. The result of Flajolet and Noy was later extended in several directions in [2]. For example, the digraph

obtained from a uniformly random chord diagram of size n by orienting the edges by flipping a fair coin was proved

to be strongly connected with the limit probability 1/e3.

Our motivation for a probabilistic study of the random diagram comes from the realization that its intersection

graph represents a structurally rich analogue of the classic random graph G(n,m), i.e. the graph distributed uniformly

on the set of all
((n2)
m

)
graphs on [n] := {1, . . . , n} with m edges. More than half a century ago, Erdős and Rényi [24]–

[25] basically created modern random graph theory by showing that n/2 and n log n/2 are the respective thresholds

of the number of edges m for appearance, with high probability, of a giant component in G(n,m), and for G(n,m)

becoming connected whp. (An event An occurs with high probability (whp) if limn→∞ P(An) = 1.) The analysis was

a striking manifestation of interplay between classic graph-enumerative techniques and probabilistic, moment-based,

estimates. What are then the corresponding thresholds for the intersection graphs of chord diagrams?

In this paper, we find some partial answers. In particular, we show (Theorem 5.9) that if the number of crossings

m = m(n) is such that limm/(n log n) ∈ (0, 2/π2), then, whp there is a giant component containing almost all m

crossings and a positive fraction of all vertices. We had to impose the upper bound on m since that was the range for

which we were able to establish a sharp asymptotic formula for Tn,m, the number of chord diagrams with n chords

and m crossings.

Earlier we proved [3] that m′(n) = (6/π2)n log n is the threshold value of the number m of crossings for connect-

edness of the intersection graph of a uniformly random chord diagram, with n chords, all crossing an additional chord

which is not a part of the diagram. (Here the intersection graph is actually a permutation graph for a permutation

of [n] induced by such a special chord diagram, with the number of edges equal to the number of inversions in that

permutation.)

It is highly plausible that the result in Theorem 5.9 holds for every m dependent on n in such a way that

limm/(n log n) > 0. This would certainly follow, if one could find a way to “embed” an intersection graph with m1

crossings into that with m2 crossings, whenever m1 < m2. However, unlike the Erdős-Rényi random graph G(n,m),

such an embedding is highly problematic, if possible at all, for the random intersection graphs in question.

In this regard, our intersection graph and the one in [3] join the club of many other random graph models lacking

“embedability”, such as the random regular graph, or more generally, the random graph with a given degree sequence.

(We did prove though in [3] that the connectedness probability for the random permutation graph increases with

m.) It would be very interesting to find an algorithm that, given n, m, generates an almost uniformly random chord

diagram with parameters n and m.

The only insight into the component structure of our intersection graph for m’s satisfying both m = Ω(n log n)

and m = o(n3/2) is a gap property for the number of crossings in the densest component, the one with the highest

ratio of number of crossings to the number of chords. It states that whp the densest component is either of size

O((m/n) logn) or it contains almost all the m crossings whence the size of the component is at least (1 + o(1))
√

2m.

We also show (Theorem 5.10) that if m ≤ n/14, then whp the largest component has a size below 5 logn/(log 225
224 ).

The bound m ≤ n/14 may well be improved; as we mentioned, the giant-component threshold for G(n,m) is m = n/2,

see Erdős-Rényi [24]–[25], Bollobás [11]. In any event, if a deterministic threshold m = m(n) for the birth of a giant

component in the intersection graph exists, it is sandwiched between n/14 and εn log n, for an arbitrarily small ε > 0.
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It is well known that for G(n,m) the connectedness threshold is m ∼ n log n/2, ([24], [25], [11]). According to [27],

the crossing number of the uniformly random diagram is sharply concentrated around its mean n(n − 1)/6, with a

standard deviation of order n3/2, and the intersection graph is disconnected with probability approaching 1 − e−1

as n tends to infinity, see [45]. These results almost certainly rule out the existence of a connectedness threshold

m(n) = o(n2). Still, we conjecture that m(n) ≈ n3/2 is the threshold value of m for the second largest component to

be of bounded size.

Among the key ingredients of our proofs is the asymptotic formula for Tn,m for m < (2/π2)n log n (Lemma 3.4),

and a bound Tn,m ≤ CnIn,m, where Cn is the n-th Catalan number and In,m is the number of permutations of

[n] with m inversions (Lemma 4.4). The asymptotic formula is based on the Touchard-Riordan sum-type formula,

Jacobi’s identity and Freiman’s asymptotic formula for the generating function of the Euler partition function. A

final step in our argument is based on a rather deep formula for the number of non-crossing partitions with given

block sizes, due to Kreweras [32].

We should note that the Jacobi identity had appeared prominently in Josuat-Vergés and Kim’s [31] paper in the

context of some new Touchard-Riordan type formulas for generating functions.

In our opinion, enumeration of chord diagrams with given genus, number of chords, and number of crossings is

an exciting open problem. This is, of course, equivalent to finding the distribution of the genus of the uniformly

random chord diagram with a given number of chords and a given number of crossings. The issue here is that while

the genus is zero iff the number of crossings is zero, the genus is always below n+1
2 , while the largest number of

crossings is
(
n
2

)
. (Conceptually this question is connected to the work of Archdeacon and Grable [6] and Rödl and

Thomas [42], who obtained strikingly sharp bounds of the genus of the Bernoulli random graph G(n, p), each (i, j)

being an edge with probability p, independently of all other
(
n
2

)
−1 pairs. ) As discussed above, without the “number

of crossings” parameter, the genus problem has been addressed. We conjecture that when the number of crossings

is passing through the threshold value for birth of a giant component, the genus of the surface associated with the

diagram is experiencing a dramatic increase, not unlike the “double jump phenomenon” for the giant component in

the random graph G(n,m) (see [24], [25], [11]).

2. Paper structure

To ease the task of reading the paper, we describe here the chronological organization of the proofs. In Section 3

we use the Touchard-Riordan formula to derive the asymptotic formula for Tn,m, the number of chord diagrams with

n chords and m crossings. As an illustration, this formula is used to obtain the limit distribution of the number of

“cuts” in a random linearized chord diagram with m = O(n) crossings.

In Section 4 we establish the upper and lower bounds for Tn,m for m outside of the range covered by the asymptotic

formula for Tn,m. As an application, we show that the maximum size of a cut in the random linearized chord diagram

with m = O(n) crossings is bounded in probability.

In Section 5 we use the asymptotics and the bounds for Tn,m to prove our main results. Our first step is to

derive a bound for the total number Cν,µ of the connected chord diagrams with ν chords and µ > ν crossings, going

beyond the explicit formulas for Cν,ν−1 and Cν,ν . Next, we use this bound to prove a crucial, crossing-density gap

result: for the crossing density m/n > α > 4e2, it is unlikely that the intersection graph contains a component with

at least β log n vertices with some explicit constant β = β(α), whose edge density falls below m/(αn). Thus for

m/n→∞, whp there are no components of size Ω(logn), whose density is negligible compared with m/n. Focusing

on the densest component as a potential candidate for being the largest component, we show that whp either it has

O(log n) vertices, or it has almost all m crossings, whence at least (1 + o(1))
√

2m vertices. In addition, we prove

that if limm/(n log n) ∈ (0, 2/π2), then, for b large enough, whp there is no component of size at least b log n, with

the number of crossings below (1− ε)m, whence there can be at most one component with that many vertices. This

result and an additional enumeration based on Kreweras’ formula for the number of non-crossing partitions with

given block sizes allow us to show that, for m in question, whp there exists a component that has almost all m

crossings and a positive fraction of n chords, a genuine giant. Lastly, we show that, for m ≤ n/14, whp the size of

the largest component is O(log n).
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We conclude with a list of open problems.

3. Counting moderately crossing chord diagrams

Our ultimate goal is to analyze a chord diagram chosen uniformly at random from all chord diagrams with n

chords and m crossings. Let Tn,m denote the size of the sample space, i.e. the number of n-chord diagrams with

m crossings, where m ∈
[
0, N

]
, N =

(
n
2

)
. To this end, we will first find asymptotic formulas for Tn,m and for the

number of `-tuples of chord diagrams with a total number of n chords and m crossings. A remarkable formula for

the generating function of Tn,m was given by Touchard [47]. Using this formula, Riordan [41] found an alternating

sum expression for Tn,m. We use Touchard’s formula to obtain a more general result than the one given by Riordan.

While the number of all graphs on n vertices with m edges is the obvious
(
N
2

)
, the formula for Tn,m we are about to

cite is rather deep.

For n > 0, introduce the generating function Tn(x) =
∑
m Tn,mx

m. Let T0(x) = 1 and

T (x, y) =
∑
n≥0

Tn(x)yn =
∑
n,m

Tn,mx
myn.

Touchard’s formula states: for |x| < 1, |y| ≤ 1/4,

T (x, (1− x)y) = C(y)A(x, 1− C(y)), (3.1)

where

A(x, y) :=
∑
j≥0

x(j+1
2 )yj ,

and C(y) is the generating function of Catalan numbers, that is, for Cn = (n+ 1)−1
(

2n
n

)
,

C(y) :=
∑
n≥0

Cny
n.

Note that A(x, y) converges for |x| < 1 and all y, since the ratio of two consecutive terms is xjy. Also, it is well

known that C(y) converges for |y| ≤ 1/4, and for those y’s

yC2(y)− C(y) + 1 = 0. (3.2)

Solving (3.2) with the initial condition C(0) = C0 = 1 gives

C(y) =
1−
√

1− 4y

2y
=

2

1 +
√

1− 4y
. (3.3)

Rewriting (3.2) as

C(y)− 1 = yC2(y), (3.4)

and using Lagrange inversion formula, we obtain

[yn](C(y)− 1)j =
j

n
[yn−j ](y + 1)2n =

j

n

(
2n

n− j

)
, 0 < j ≤ n. (3.5)

For j = 1, we are back to Cn = (n + 1)−1
(

2n
n

)
. Equation (3.5) will be used shortly in the proof of Lemma 3.2.

Using (3.1), Riordan [41] obtained the following formula for Tn,m.

Theorem 3.1 (Touchard-Riordan). The number of chord diagrams with n chords and m crossings is given by

Tn,m =
∑
j

(−1)j
(
n+m− 1− J(j)

n− 1

)
2j + 1

n+ j + 1

(
2n

n− j

)
, (3.6)

where J(j) =
(
j+1

2

)
and the sum is over all j ≥ 0 such that j ≤ n and J(j) ≤ m.
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We will need the following more general statement.

Lemma 3.2. Given ` ≥ 1,

[xmyn]T `(x, y) =
∑

j=(j1,...,j`)≥0

∏̀
µ=1

(−1)jµ
(
n+m− 1− U(j)

n− 1

)
2j + `

2n+ `

(
2n+ `

n− j

)
, (3.7)

where

j :=
∑
ν

jν , U(j) :=
∑
µ

J(jµ), J(i) :=

(
i+ 1

2

)
,

and the sum in (3.7) is over j ≥ 0 (meaning that each component of j is nonnegative), such that j ≤ n and U(j) ≤ m.

Proof. Using (3.4), (3.5), and (3.1),

[xmyn]T `(x, y) = [xmyn]
(
(1− x)−nC(y)`A`(x, 1− C(y))

)
= [xmyn]

(1− x)−nC(y)`

∑
j≥0

(−1)jxJ(j)(C(y)− 1)j

`


= [xmyn]

(1− x)−n
∑

j1,...,j`≥0

∏̀
µ=1

(−1)jµxJ(jµ)(C(y)− 1)jµ

(∑̀
κ=0

(
`

κ

)
(C(y)− 1)κ

)
=

∑
j1,...,j`≥0

∏
µ

(−1)jµ
(

[xm](1− x)−nxU(j)
)(∑̀

κ=0

(
`

κ

)
[yn](C(y)− 1)κ+j

)

=
∑

j1,...,j`≥0

(∏̀
µ=1

(−1)jµ

)(
n+m− 1− U(j)

n− 1

)∑̀
κ=0

(
`

κ

)
κ+ j

n

(
2n

n− κ− j

)
.

Here ∑̀
κ=0

(
`

κ

)(
2n

n− κ− j

)
=

(
2n+ `

n− j

)
,

and ∑̀
κ=0

κ

(
`

κ

)(
2n

n− κ− j

)
= `

`−1∑
r=0

(
`− 1

r

)(
2n

n− r − 1− j

)
= `

(
2n+ `− 1

n− 1− j

)
,

implying

∑̀
κ=0

(
`

κ

)
κ+ j

n

(
2n

n− κ− j

)
=
j

n

∑̀
κ=0

(
`

κ

)(
2n

n− κ− j

)
+

1

n

∑̀
κ=0

κ

(
`

κ

)(
2n

n− κ− j

)
=
j

n

(
2n+ `

n− j

)
+
`

n

(
2n+ `− 1

n− 1− j

)
=

2j + `

2n+ `

(
2n+ `

n− j

)
.

This completes the proof of (3.7).

The formula in Lemma 3.2 is too unwieldy for our needs; however it enables us to derive an eminently usable,

asymptotic formula for [xmyn]T `(x, y), in particular for Tn,m, when the number of crossings m is not too large

compared with n. We begin with
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Lemma 3.3. Let n→∞ and m = O(n). Then, setting q = m/(m+ n),

Tn,m ∼
(
n+m− 1

n− 1

)
Cn
∏
j≥1

(1− qj)3,

[xmyn]T `(x, y) ∼ `(2f(q))`−1Tn,m; f(x) :=
∑
j≥0

(−1)jxJ(j),
(3.8)

where J(j) =
(
j+1

2

)
as in the previous lemma.

Proof. The case m = O(1) is easy as the sums in (3.6) and (3.7) are asymptotic to their first terms, which correspond

to j = 0 and j = 0, respectively. Consider now the more difficult case m → ∞. We notice upfront that 1 − q is

bounded away from 0 for m = O(n). Let Sn,m(j) denote the absolute value of the j-th term of the sum in (3.7), i.e.

Sn,m(j) =

(
n+m− 1− U(j)

n− 1

)
2j + `

2n+ `

(
2n+ `

n− j

)
,

where

j =
∑
ν

jν and U(j) =
∑
µ

J(jµ).

We first find an upper bound and an asymptotic equation for Sn,m(j) by analyzing the individual factors above.

Observe that (
n+m− 1− U(j)

n− 1

)
=

(
n+m− 1

n− 1

)
(m)U(j)

(m+ n− 1)U(j)
, (3.9)

where (a)k denotes the k-th falling factorial of a. Note that U(j) ≤ m for an admissible j, i.e. for j meeting the

conditions of Lemma 3.2. Using (1 + 1/u)v ≤ (1 + 1/u)u ≤ e for any u > 0 and v ≤ u, we get

(m)U(j)

(m+ n− 1)U(j)
≤
(

m

m+ n− 1

)U(j)

= qU(j)

(
1 +

1

m+ n− 1

)U(j)

≤ eqU(j), (q = m/(m+ n)). (3.10)

Also, straightforward computations give

2j + `

2n+ `

(
2n+ `

n− j

)
≤ 2j + `

2n+ `

(
2n+ `

n

)
≤ 2j + `

2n+ `
2`
(

2n

n

)
≤ 2`(2j + `)Cn.

Therefore, uniformly for all admissible j,

Sn,m(j) ≤b 2`(2j + `)

(
n+m− 1

n− 1

)
Cn · qU(j). (3.11)

Here and elsewhere we use A ≤b B as a shorthand for A = O(B) when B is too bulky. Furthermore, j is certainly

admissible if say j < m1/5, and for those j, with similar computations, it is easy to obtain

Sn,m(j) =
(
1 +O(j4/m)

)
2`−1(2j + `)

(
n+m− 1

n− 1

)
Cn · qU(j). (3.12)

Combining (3.11) and (3.12), and using the uniform convergence of the infinite series
∑

j≥0 j
4qU(j), we get

[xmyn]T `(x, y) =

(
n+m− 1

n− 1

)
Cn2`−1 ×

∑
j

(2j + `)
∏̀
µ=1

(−1)jµqJ(jµ) + o(1)

 , (3.13)

the sum being taken over all j ≥ 0. Here

∑
j

∏̀
µ=1

(−1)jµqJ(jµ) = f(q)`
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and ∑
j

2j
∏̀
µ=1

(−1)jµqJ(jµ) = `f(q)`−1
∑
j1≥0

(−1)j1(2j1)qJ(j1),

where f(x) =
∑
j≥0(−1)jxJ(j) as defined in (3.8). Combining the last two equations, we get

∑
j

(2j + `)
∏̀
µ=1

(−1)jµqJ(jµ) = `f(q)`−1

f(q) + 2
∑
j1≥0

(−1)j1j1q
J(j1)


= `f(q)`−1

∑
j1≥0

(−1)j1(2j1 + 1)qJ(j1),

and (3.13) becomes

[xmyn]T `(x, y) =

(
n+m− 1

n− 1

)
Cn`×

(2f(q))`−1
∑
j≥0

(−1)j(2j + 1)qJ(j) + o(1)

 . (3.14)

Since the series for f(x) in (3.8) is alternating, and qJ(j) ↓ 0, we have f(q) > 1− q, i.e. f(q) is bounded away from

zero. However, (2j + 1)qJ(j) is not monotone, and bounding the last alternating sum from below would be a rather

hard task. Fortunately, there is a remarkable identity discovered by Jacobi as a corollary of the classic triple product

identity, Andrews et al. [5, Page 500]:∑
j≥0

(−1)j(2j + 1)xJ(j) =
∏
j≥1

(1− xj)3, |x| < 1. (3.15)

Since our q = m/(m + n) is bounded away from 1 for m = O(n), the product on the RHS of (3.15) for x = q is

bounded away from zero uniformly for n. With this fact in mind, Equations (3.14) and (3.15) complete the proof of

Lemma 3.3.

The reader is correct to suspect that the constraint m = O(n) is unnecessarily restrictive. In our next statement

we extend the asymptotic formulas to m < (2/π2)n log n. We hope that the considerably more technical argument

can be understood more easily since we will use the proof above as a rough template.

Lemma 3.4. Let ` ≥ 1 be given. If

m ≤ 2

π2
n
(
log n− 0.5(`+ 2) log log n− ω(n)

)
, (3.16)

where ω(n)→∞ however slowly, then

[xmyn]T (x, y)` ∼ `(2f(q))`−1

(
n+m− 1

n− 1

)
Cn
∏
j≥1

(1− qj)3, q := m/(m+ n). (3.17)

Proof. It suffices to consider the case m/n→∞, in which case q → 1. We still have f(q) > 1−q > 0, but we need an

extra effort to prove that limn→∞ f(q) > 0, a fact crucial for our argument. By the definition of f(x) given in (3.8),

f(x) =
∑

even j≥0

(
xJ(j) − xJ(j+1)

)
= (1− x)

∑
even j≥0

xJ(j)(1 + · · ·+ xj) = (1− x)F (x),

F (x) :=
∑

even j≥0

J(j)+j∑
i=J(j)

xi,
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where J(j) =
(
j+1

2

)
as before. For a generic ν > 0, the interval [0, ν] contains the jν/2 disjoint intervals [J(j), J(j)+j],

j even, where jν is the largest even integer not exceeding
⌊
(−3 +

√
4ν + 9)/2

⌋
, and possibly a part of the (jν/2+1)-st

interval, of length O(jν). Since jν = O(ν1/2), and j2
ν = 2ν +O(ν1/2), we have

∑
µ≤ν

[xµ]F (x) =

jν/2∑
j=0

(j + 1) +O(jν) =
ν

2
+O(ν1/2).

So, by Tauberian theorem for power series (Feller [26], Ch. XIII, Sect. 5), we have limx→1−(1 − x)F (x) = 1/2,

implying that

lim
x→1−

f(x) = 1/2 > 0 =⇒ lim
n→∞

f(q) = 1/2. (3.18)

With (3.18) in mind, let us turn to the core of the proof. For the reader convenience, we restate the key

identity (3.7):

[xmyn]T `(x, y) =
∑

j=(j1,...,j`)≥0

(
n+m− 1− U(j)

n− 1

)(∏̀
µ=1

(−1)jµ

)
2j + `

2n+ `

(
2n+ `

n− j

)
, (3.19)

where U(j) =
∑
µ J(jµ) and j =

∑
ν jν . We focus on Sn,m(j), the absolute value of the j-th summand in (3.19).

The uniform bound (3.11) continues to hold. Setting M := ba(1−q)−1c for some a > 1, we write the sum as S1 +S2,

where S1 is the contribution of j’s with maxi ji ≤M and S2 is the contribution of the remaining j’s. For the terms

in S1, analogously to (3.12) we have

Sn,m(j) =
(
1 +O(U(j)2/m)

)
2`−1(2j + `)

(
n+m− 1

n− 1

)
Cn · qU(j).

Therefore, S1 = S11 +R1, where

S11 =

(
n+m− 1

n− 1

)
Cn2`−1

∑
j1,...,j`

max ji≤M

(∑̀
t=1

(2jt + 1)

) ∏̀
µ=1

(−1)jµqJ(jµ) (3.20)

=

(
n+m− 1

n− 1

)
Cn`

M∑
j=0

(−1)j(2j + 1)qJ(j)

(
2
M∑
k=0

(−1)kqJ(k)

)`−1

,

and

|R1| ≤b
1

m

(
n+m− 1

n− 1

)
Cn

∑
j≥0

j5qJ(j)

∑
k≥0

qJ(k)

`−1

. (3.21)

For the last bound we have used U(j)2
∑
µ jµ ≤b

∑
ν j

5
ν and the fact that ` is fixed. Defining the functions

hM (q) =
∞∑

j=M+1

(−1)j(2j + 1)qJ(j); fM (q) =
M∑
k=0

(−1)kqJ(k),

and using (3.15) on the last line of (3.20), we write

S11 =

(
n+m− 1

n− 1

)
Cn`

∏
j≥1

(1− qj)3 − hM (q)

 (2fM (q))`−1. (3.22)

Now qJ(j) ≤ exp(−j2(1− q)/2), and x exp(−x2(1− q)/2) attains its maximum at (1− q)−1/2 � a(1− q)−1 = M . So

|hM (q)| ≤
∞∑
j=M

(2j + 1)qJ(j) ≤b
∫ ∞
M

x exp(−x2(1− q)/2)dx = (1− q)−1 exp

(
− a2

2(1− q)

)
. (3.23)
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Also, ∣∣∣∣ ∑
k>M

(−1)kqJ(k)

∣∣∣∣ ≤ qJ(M+1) ≤ qa
2(1−q)−2/2 ≤ exp

(
− a2

2(1− q)

)
,

where the last inequality follows from x1/(1−x) ≤ e−1 for any x ∈ (0, 1). So using Jacobi identity,∑
0≤j≤M

(−1)j(2j + 1)qJ(j) =
∏
j≥1

(1− qj)3 +O
(
(1− q)−1e−a

2/2(1−q)).
Here, by Freiman’s asymptotic formula (see Postnikov [40, Sect. 2.7], and also Pittel [37, Eq. 2.8], [38, Sect. 2]),

∏
j≥1

(1− qj) = exp

(
−π

2

6z
− 1

2 log
z

2π
+O(|z|)

)
z=− log q

= exp

(
− π2

6(1− q)
− 1

2
log(1− q) +O(1)

)
.

(3.24)

Therefore ∑
0≤j≤M

(−1)j(2j + 1)qJ(j) =
∏
j≥1

(1− qj)3
(

1 +O
(
(1− q)1/2e−(a2−π2)/2(1−q))) .

Also, using lim f(q) = 1/2 > 0,

fM (q) = f(q)−
∑
k>M

(−1)kqJ(k) = f(q)
(

1 +O
(
e−a

2/2(1−q))) .
So, selecting a = π

√
3 say, (3.20) becomes

S11 =
(

1 +O
(
e−(1−q)−1))

`
(
2f(q)

)`−1
(
n+m− 1

n− 1

)
Cn
∏
j≥1

(1− qj)3. (3.25)

Furthermore, (3.21) together with the bounds∑
j≥0

j5qJ(j) = O((1− q)−3), 2
∑
k≥0

qJ(k) ≤ 2(1− q)−1/2 (3.26)

yield

|R1| ≤b
1

m
(1− q)−(`+5)/2

(
n+m− 1

n− 1

)
Cn. (3.27)

Let us compare the expression for S11 in (3.25) and the the bound (3.27) for |R1|. By Freiman’s formula and the

condition (3.16), we have

m−1(1− q)−(`+5)/2∏
j≥1(1− qj)3

≤b exp(π2m/2n)
m(`+3)/2

n(`+5)/2

≤b (log n)(`+3)/2n−1 exp(π2m/2n− 0.5 log log n)

≤b exp

(
`+ 2

2
log logn− log n+

π2m

2n

)
≤ e−ω(n) → 0.

Since f(q) is bounded away from 0, it follows from (3.25) and (3.27) that S1, the contribution to the sum in (3.19)

of the terms with maxi ji ≤M , is given by

S1 = (1 + o(1))

(
n+m− 1

n− 1

)
Cn`(2f(q))`−1. (3.28)
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It remains to show that S2, the contribution to the sum in (3.19) of the terms with maxi ji > M , is negligible

compared to S1. For ` is fixed, we have
(

2n+`
n−j

)
= O

((
2n
n

))
, uniformly for j. So the equation (3.7) gives

|S2| ≤b
(
n+m− 1

n− 1

)
Cn

∑
j1,...,j`

max ji>M

∏
µ

qJ(jµ)
∑̀
t=1

(2jt + 1).

Considering (j1, . . . , j`) with max ji = j1, and using symmetry, we see that the right hand side above is at most

`

(
n+m− 1

n− 1

)
Cn

∑
j≥0

qJ(j)

`−1 ∑
j1≥M

`(2j1 + 1)qJ(j1).

Using
∑
j≥0 q

J(j) ≤ (1− q)−1 and the upper bound given in (3.23) for the last sum above, we get

|S2| ≤b
(
n+m− 1

n− 1

)
Cn(1− q)−` exp

(
− a2

2(1−q)

)
.

Using this inequality, the asymptotic value of S1 given in (3.28), and f(q) > 1− q, we get

|S2|
S1
≤b (1− q)−2`+1 exp

(
− a2

2(1−q)

)
→ 0

as q = m/(m+ n)→ 1. This finishes the proof.

Remark 3.5. Whether the constraint (3.16) can be relaxed to, say, m = Θ(n log n) is, in our opinion, a hard open

problem.

As the first application, we apply Lemma 3.3 to determine the limit distribution of the number of cuts in a

random linearized chord diagram. A cut is a partition of [2n] into two blocks [2n1] and [2n] \ [2n1] such that there

is no chord joining two points from different blocks. Let Xn,m be the random variable counting the cuts in the

linearized chord diagram chosen uniformly at random among all diagrams with m crossings.

Theorem 3.6. Suppose that n → ∞ and m = O(n). Let q = m/(m + n). Then f(q) > 1/2 and is bounded away

from 1/2, and for each j ≥ 0,

P(Xn,m = j) = (j + 1)(1− p)2pj + o(1); p = 1− (2f(q))−1. (3.29)

Remark 3.7. We have p = 1/2 for m = 0, whence

lim
n→∞

P(Xn,0 = j) = (j + 1)2−(j+2), j ≥ 0.

Also, a byproduct of this theorem is a pure-calculus inequality f(x) > 1/2 for x ∈ [0, 1), which seems hard to prove

out of the context of the chord diagrams.

Proof of Theorem 3.6. Notice upfront that

P(Xn,m ≥ 1) ≥ Tn−1,m

Tn,m
,

as Tn−1,m counts the linearized chord diagrams with an arc from the point 1 to the point 2. Therefore, for m = O(n)

as n→∞, Lemma 3.3 implies that

lim inf P(Xn,m ≥ 1) ≥ lim inf
Cn−1

Cn
·
(
n+m−2
n−2

)(
n+m−1
n−1

) = lim inf
n− 1

4(n+m− 1)
> 0. (3.30)
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Next, observe that

E

[(
Xn,m

k

)]
=

1

Tn,m

∑
(n1,m1),...,(nk+1,mk+1)∑

i ni=n,
∑
j mj=m; n1,...,nk+1>0

k+1∏
i=1

Tni,mi

=
1

Tn,m
[xmyn](T (x, y)− 1)k+1

=
1

Tn,m

k+1∑
`=0

(−1)k+1−`
(
k + 1

`

)
[xmyn](T (x, y))`.

So, by Lemma 3.3,

E

[(
Xn,m

k

)]
= o(1) +

k+1∑
`=0

(−1)k+1−``

(
k + 1

`

)
(2f(q))`−1

= (k + 1)(2f(q)− 1)k + o(1).

In particular, it follows that lim inf f(q) ≥ 1/2. If lim inf f(q) = 1/2 then E[Xn,m] → 0 and P(Xn,m > 0) → 0, in

violation of (3.30). Thus lim inf f(q) > 1/2 if m = O(n); this effectively proves that f(x) > 1/2 for all x ∈ [0, 1). By

the last equation, Xn,m is asymptotic, in distribution, to Xq such that

E

[(
Xq

k

)]
= (k + 1)(2f(q)− 1)k.

Notice that, for z > 0 small enough,

E
[
zXq

]
= E

[
(1 + (z − 1))Xq

]
=
∑
k≥0

(z − 1)kE

[(
Xq

k

)]
=
∑
k≥0

(z − 1)k(k + 1)(2f(q)− 1)k =
1[

1− (z − 1)(2f(q)− 1)
]2

=

(
1− p
1− zp

)2

; p = p(q) := 1− (2f(q))−1;

here lim supn→∞ p(q) < 1 since lim infn→∞ f(q) > 1/2. Note that (1−p)/(1−zp) is the moment generating function

of a Geometric random variable Yq with success probability (1− p), that is,

P(Yq = j) = (1− p)pj , j ≥ 0.

Therefore, Xq
D≡ Y ′q + Y ′′q , where Y ′q and Y ′′q are independent copies of the geometric Yq. Hence

P(Xq = j) =

j∑
i=0

P(Y ′q = i) P(Y ′′q = j − i) = (j + 1)(1− p)2pj .

Since Xn,m is asymptotic in distribution to Xq, the last equation implies

P(Xn,m = j) = P(Xq = j) + o(1) = (j + 1)(1− p)2pj + o(1), j ≥ 0.

Remark 3.8. Intuitively, whp all the cuts are relatively close to the point 1 or point 2n, and the numbers of those

“left” and “right” cuts are asymptotically independent, each close to the geometric Y . We will prove the first part of

this conjecture in the next section, as an immediate application of an upper bound for Tν,µ that holds for all values

of the parameters ν and µ.
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4. Bounds for Tn,m

For the proofs of our main results in Section 5, in addition to the sharp asymptotic formula (3.17) for Tn,m, we

will also need some bounds for Tn,m for m not in the range covered by this formula.

These bounds will be expressed in terms of the double-index sequence of the numbers {In,m}, where In,m is the

number of permutations of [n] with m inversions. Each of those In,m permutations p = (p1, . . . , pn) gives rise to

an inversion sequence x = (x1, . . . , xn): xj is the number of pairs (pi, pj) such that i < j and pi > pj . Obviously

xi ≤ i− 1 and
∑
i xi = m. Conversely, every such sequence x determines a unique permutation p such that x is p’s

inversion sequence. Existence of this bijective correspondence implies a classic identity

In,m = [zm]
n−1∏
j=0

(1 + z + · · ·+ zj) = [zm]
n∏
j=1

1− zj

1− z
. (4.1)

Probabilistically, the number of inversions, denote it In, in a uniformly random permutation of [n] is distributed as

R1 + · · ·+Rn, where R1, . . . , Rn are independent, Rj being uniform on [j − 1]. In particular, the likely values of In
are of order O(n2).

Clearly, In,m is at most the number of nonnegative integer solutions of the equation x1 + · · ·+ xn = m, i.e.

In,m ≤
(
n+m− 1

n− 1

)
. (4.2)

Now we state a technical lemma that gives a lower bound for In,m for m� n2. Equation (4.2) and this lemma will

be used in Lemma 4.4, which gives upper and lower bounds for Tn,m.

Lemma 4.1. Suppose that m/n→∞ and m = o
(
n3/2

)
. Then,

In,m ≥
(
n+m− 1

n− 1

)
exp

(
−π

2m

6n
+O(log n)

)
.

We note that Louchard and Prodinger [34], see other references therein, used a saddle-point method to find very

sharp asymptotic formulas for In,m in the cases m = O(n) and m = Θ(n2). Our argument is based on reduction

to a local limit theorem for the sum of independent random variables with log-concave distributions established by

Bender [10] and Canfield [16] about forty years ago.

Proof. Pick ρ ∈ (0, 1), and introduce the sequence Y = (Y1, . . . , Yn) of independent random variables such that

P(Yi = j) =
(1− ρ)ρj

1− ρi
, 0 ≤ j ≤ i− 1;

so

E
[
zYi
]

=
1− ρ
1− ρi

· 1− (ρz)i

1− ρz
, 1 ≤ i ≤ n.

Then (4.1) becomes

In,m = ρ−m[zm]
n∏
i=1

1− (ρz)i

1− ρz
= ρ−m

n∏
i=1

1− ρi

1− ρ
[zm]

n∏
i=1

E
[
zYi
]

= ρ−m
n∏
i=1

1− ρi

1− ρ
P(‖Y ‖ = m), (4.3)

where ‖Y ‖ :=
∑
i Yi. In particular,

In,m ≤ ρ−m
n∏
i=1

1− ρi

1− ρ
, (4.4)
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and we get the sharpest upper bound by selecting ρ∗ that minimizes the right side of (4.4). Since In,m does not

depend on ρ, this ρ∗ maximizes P(‖Y ‖ = m). Lowering the bar, we are content to prove existence of a stationary

point ρ∗, for which we will be able to bound from below both the RHS of (4.4) and P(‖Y ‖ = m), whence In,m itself.

Crucially, the distribution of
∑
i Yi is log-concave, i.e.

P(‖Y ‖ = j)2 ≥ P(‖Y ‖ = j − 1) P(‖Y ‖ = j + 1), j ≥ 0. (4.5)

The reason is that each Yi has a log-concave distribution and the convolution of log-concave distributions is log-

concave as well, Menon [35]. Even stronger, in terminology of Canfield [16], the distribution of ‖Y ‖ is properly log-

concave, meaning that (a) the range of ‖Y ‖ has no gaps, and (b) the equality in (4.5) holds only if P(‖Y ‖ = j) = 0.

Indeed, Y1 = 0 is properly log-concave distributed, and (induction step) proper log-concavity of Zs+1 :=
∑s+1
r=1 Yr

for s ≥ 1 follows from proper log-concavity of Zs :=
∑s
r=1 Yr and the identity [16]

P 2
s+1,ν − Ps+1,ν−1Ps+1,ν+1 =

∑
α<β

(
Ps,αPs,β−1 − Ps,α−1Ps,β

)(
ps+1,ν−α ps+1,ν−β+1 − ps+1,ν−α+1 ps+1,ν−β

)
, (4.6)

Pt,µ := P(Zt = µ), pt,µ := P(Yt = µ). (See the remark following the proof.) Here is how. Each summand on the

RHS of (4.6) is non-negative as both Zs and Ys+1 are log-concave, and their respective ranges, [0, 1, . . . ,
(
s
2

)
] and

[0, 1, . . . , s], have no gaps. If ν ≤
(
s
2

)
, we see that the summand for α = ν, β = ν + 1 is

(P 2
s,ν − Ps,ν−1Ps,ν+1)p2

s+1,0 > 0,

because, by inductive hypothesis, {Ps,t} is properly log-concave and Ps,ν > 0. If
(
s
2

)
< ν ≤

(
s+1

2

)
, we consider

α = ν − s and β = α+ 1. Then

α = ν − s ≤
(
s+ 1

2

)
− s =

(
s

2

)
,

α = ν − s ≥
(
s

2

)
+ 1− s =

(
s− 1

2

)
≥ 0,

whence Ps,α > 0. Then the corresponding summand on the RHS of (4.6) is

(P 2
s,α − Ps,α−1Ps,α+1)(p2

s+1,s − ps+1,s+1ps+1,s−1) > 0,

because, by inductive hypothesis, P 2
s,α − Ps,α−1Ps,α+1 > 0, and ps+1,s > 0, ps+1,s+1 = 0.

For x ∈ (0, 1), introduce

L(x) : = log

(
x−m

n∏
i=1

1− xi

1− x

)

= −m log x+
n∑
i=1

(log(1− xi)− log(1− x)).

The stationary points of L(x) are the roots, if any exist , of

L′(x) =
1

x

(
n

x

1− x
−m−

∑
i

ixi

1− xi

)
= 0. (4.7)

As an approximation for a possible root of L′(x) = 0, pick a constant A > 0 and introduce ρ(A) = q(1 + A/n),

q := m/(m+ n). Since m/n2 → 0, we have

1− ρ = (1− q)
(
1 +O(m/n2)

)
,

whence

nρ/(1− ρ)−m = A (m/n)
2

+O(m/n). (4.8)
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Further, approximating the sum
∑
i iρ

i/(1− ρi) by the corresponding integral we obtain∑
i

iρi

1− ρi
=

1

(log ρ)2

∫ ∞
0

x

ex − 1
dx+O((1− ρ)−1)

=
(
π2/6

)
(m/n)2 +O(m/n). (4.9)

Comparing (4.8) and (4.9), and using (4.7), we see that, for n large enough, L′(ρ(A)) < 0 for A < π2/6 and

L′(ρ(A)) > 0 if A > π2/6. Thus the equation L′(x) = 0 does have a root ρ such that ρ = q
(
1 + O(n−1)

)
.

Furthermore, uniformly for x between ρ and q,

L′′(x) =
m

x2
+

n

(1− x)2
+
∑
i

(
ixi−2

1− xi
− i2xi

(1− xi)2

)
= O(m+m2/n+m3/n3) = O(m2/n).

Therefore

L(ρ) = L(q) +O
(
m2n−1(ρ− q)2

)
= L(q) +O(m2/n3) = L(q) + o(1),

since m = o(n3/2). This is equivalent to

ρ−m
n∏
i=1

1− ρi

1− ρ
=
(
1 +O(m2/n3)

)
q−m

n∏
i=1

1− qi

1− q
.

Here, by Lemma 3.11 in [3], we have

n∏
j=1

(1− qj) =
(
1 +O(m2/n3)

) ∞∏
j=1

(1− qj),

and, by the proof of Lemma 3.14 in [3], we have

∞∏
j=1

(1− qj) ∼ K · exp
(
−(π2/6)(m/n) + (1/2) log(m/n)

)
,

where K =
√

2π · e−π2/12. Finally,

q−m(1− q)−n =
(m+ n)m+n

mmnn
≥
(
n+m

n

)
≥
(
n+m− 1

n− 1

)
.

Combining the last four equations, we conclude that

ρ−m
n∏
i=1

1− ρi

1− ρ
≥
(
n+m− 1

n− 1

)
exp

(
−π

2m

n
+O(log n)

)
. (4.10)

It remains to evaluate P(‖Y‖ = m). By independence of Y1, . . . , Yn, using Berry-Esseen inequality (Feller [26],

Ch. XVI, Section 5),

max
x∈R

∣∣∣∣ P (‖Y ‖ ≤ E[‖Y ‖] + xσ(‖Y ‖))− 1√
2π

∫ x

−∞
e−y

2/2 dy

∣∣∣∣ ≤ 6
r3

σ3
,

where

σ2 =Var(‖Y ‖) =
n∑
i=1

Var(Yi) =
n∑
i=1

E
[
(Yi − E[Yi])

2
]
,

r3 =
n∑
i=1

E
[
|Yi − E[Yi]|3

]
.
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To compute σ2 we use

E
[
z‖Y ‖

]
=

n∏
i=1

E
[
zYi
]

=
n∏
i=1

1− ρ
1− ρi

· 1− (ρz)i

1− ρz
,

and
d2

dz2
E
[
z‖Y ‖

]∣∣∣∣
z=1

= E
[
(‖Y ‖)2

]
.

Computing the derivative and bounding the resulting sum by the integral we obtain

σ2 = E
[
(‖Y ‖)2

]
+ E[‖Y ‖]−

(
E[‖Y ‖]

)2
=n

ρ

(1− ρ)2
−

n∑
i=1

i2ρi

(1− ρi)2

=
(
1 + o(1)

)
m2/n−Θ((m/n)3) =

(
1 + o(1)

)
m2/n.

Similar, but more protracted, computations lead to

r4 :=
n∑
i=1

E
[
(Yi − E[Yi])

4
]

= (1 + o(1))
n

(1− ρ)4

=
(
1 + o(1)

)
m4/n3.

Therefore,

r3 ≤ n1/4(r4)3/4 = (1 + o(1))m3/n2.

Consequently, for n large enough,

max
x∈R

∣∣∣∣ P (‖Y ‖ ≤ E[‖Y ‖] + xσ(‖Y ‖))− 1√
2π

∫ x

−∞
e−y

2/2 dy

∣∣∣∣ ≤ 7n−1/2. (4.11)

If we write 7n−1/2 = K/σ, then
K√
σ

= 7

√
σ

n
≤ 8

√
m

n3/2
→ 0

since m� n3/2. To finish the proof we will use the following local limit theorem by Canfield.

Theorem 4.2. (Canfield [16]) Suppose that X has a properly log-concave distribution and that

sup
x∈R

∣∣∣∣ P
(
X ≤ E[X] + xσ(X)

)
− 1√

2π

∫ x

−∞
e−y

2/2 dy

∣∣∣∣ ≤ K

σ(X)
.

If K > 7, K/σ(X) < 10−7, and K/σ(X)1/2 < 10−2, then

sup
m

∣∣∣∣ P(X = m)− 1√
2πσ(X)

exp

(
− (m− E[X])2

2σ2(X)

)∣∣∣∣ ≤ c

σ(X)3/2
,

with c := 14.5K + 4.87.

In light of (4.11), it follows from Canfield’s theorem that

P(‖Y ‖ = m) =
1 + o(1)√

2πVar(‖Y ‖)
= Θ(n1/2m−1). (4.12)

Combining (4.3), (4.12) and (4.10), we complete the proof.

Remark 4.3. In Canfield [16], the striking identity (4.6) was used to show that the convolution operation preserves

the proper log-concavity. We had to use this identity differently, i.e. inductively, because none of Y3, . . . , Yn is properly

log-concave. Notice also that for ρ = 1 our claim reduces to proper logconcavity of In,m for every n ≥ 1. The usual

logconcavity of this sequence is long known, of course. More recently Bóna [14] found a purely combinatorial proof

of this property, a proof that does not rely on Menon’s theorem.
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The next lemma provides an upper bound for Tn,m applicable to all m, and a lower bound for Tn,m in the case

when m meets the condition of Lemma 4.1, i.e. far beyond the constraint of Lemma 3.4.

Lemma 4.4. (i) For all m,n ≥ 0,

Tn,m ≤ CnIn,m ≤ Cn
(
n+m− 1

n− 1

)
. (4.13)

(ii) If n→∞ and m = o
(
n3/2

)
, then

Tn,m ≥b exp
[
−2(m/n)(log n)

]
Cn

(
n+m− 1

n− 1

)
. (4.14)

Proof. (i) If a chord connects i and j, where i < j, we call i and j the initial point and the terminal point of the

chord, respectively. We label the chords of a chord diagram according to the ordering of initial points; the initial

point of the i-th chord is smaller than the initial point of the (i + 1)-st one for 1 ≤ i ≤ n − 1. Let D be a chord

diagram with n chords and m crossings. Let yi be the number of terminal points between the initial points of the

i-th and (i+ 1)-st chords of D. Clearly, we have

y1 + · · ·+ yk ≤ k, ∀k < n and y1 + · · ·+ yn = n. (4.15)

Note that the number of sequences satisfying (4.15) is given by the n-th Catalan number Cn and we call such

sequences as Catalan sequences. Also, let xi be the number of chords among the first i − 1 chords of D that cross

the i−th chord. Clearly, 0 ≤ xi ≤ i− 1 and x1 + · · · + xn = m and so (x1, . . . , xn) is an inversion sequence. Hence

D gives a pair of n-long sequences (y,x) = (y(D),x(D)) consisting of a Catalan sequence and an inversion sequence

with a total of m inversions.

In order to conclude the proof of the first part, we need to show that (y(D1),x(D1)) 6= (y(D1),x(D1)) for

D1 6= D2. First, if y(D1) = y(D2), then the initial points of D1 agree with the initial points of D2. Now note that,

for i < j, the i-th and j-th chords cross each other if the terminal point of the i-th chord lies between the initial and

terminal points of the j-th chord. Consequently, if x(D1) = x(D2) in addition to y(D1) = y(D2), then the terminal

points of all the chords in the two diagrams also agree and hence D1 = D2, which finishes the first part.

(ii) In the first part we showed that each chord diagram gives a unique pair (y,x). To find a lower bound on

Tn,m, we need to work the other way around. Let D be a chord diagram and let (y,x) be the corresponding pair

of sequences. Let Fj and Lj correspond to the initial (first) and the terminal (last) points of the j-th chord of D.

The chord labeled with (n− k) intersects xn−k chords of smaller label and thus at least xn−k of the terminal points

from L1, . . . , Ln−k−1 must appear after Fn−k. On the other hand, a total number of yn−k + · · ·+ yn terminal points

appear after Fn−k, of which k + 1 of them are Ln−k, . . . , Ln. Thus, we get the following set of inequalities:

xn−k ≤ yn−k + yn−k+1 + · · ·+ yn − (k + 1), 0 ≤ k ≤ n− 1. (4.16)

We now claim that, conversely, a pair (y,x) satisfying the inequalities in (4.16) corresponds to a chord diagram. To

prove this, first note that y alone determines the initial points F1, . . . , Fn of the chords, so we only need to recover the

terminal points L1, . . . , Ln using (4.16). Now we find Ln, Ln−1, . . . , L1 in this order as follows: Ln is the (xn + 1)-st

number bigger than Fn and once Ln, . . . , Ln−k+1 are determined, to ensure that the (n−k)-th chord intersects xn−k
chords of smaller label, we must choose Ln−k as (in their natural order) the (xn−k + 1)-st available number bigger

than Fn−k, that is, (xn−k + 1)-st number in {Fn−k + 1, . . . , 2n} \ {Fn−k+1, . . . , Fn, Ln−k+1, . . . , Ln}. This choice is

possible by (4.16) since there are yn−k + · · ·+ yn − k available numbers after choosing Ln, . . . , Ln−k−1.

It remains to show that the right hand side of (4.14) is a lower bound on the number pairs (y,x) satisfying (4.16).

For a given x, let N(x) denote the number of y’s meeting the constraint (4.16).

Claim. Let M = M(x) denote the maximum of the n terms in the inversion sequence x = (x1, . . . , xn). Then,

N(x) ≥ Cn−M .
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Proof of the claim. Let A = A(M) be the set of Catalan sequences y = (y1, . . . , yn) such that yi = 0 for i ≤M and

y′ := (yM+1, . . . , yn −M) is also a Catalan sequence. Since y′ is a Catalan sequence, by (4.15), for 0 ≤ k < n−M ,

yn−k + · · ·+ yn−1 + (yn −M) ≥ k + 1.

This inequality, together with the fact that maxi xi = M , gives

xn−k ≤M ≤ yn−k + · · ·+ yn−1 + yn − (k + 1).

For n−M ≤ k < n, we have

xn−k ≤ n− k − 1 = yM+1 + · · ·+ yn − (k + 1) = yn−k + · · ·+ yn − (k + 1),

where the inequality follows from the fact that x is an inversion sequence and the equalities follow from the definition of

A. By the last two equations, any y ∈ A satisfies the condition (4.16). This finishes the proof since |A| = Cn−M .

By the claim above, we have

Tn,m =
∑
x

N(x) ≥
∑
x

Cn−M(x). (4.17)

In the proof of Lemma 3.4 in [3] it was shown that, whp, the maximum M(x) does not exceed (1 + ε)(m/n) log n

when x = (x1, . . . , xn) is chosen uniformly at random from inversion sequences with m inversions. Using this fact

and (4.17), we get: for M0 = d((1 + ε)m/n) logne,

lim sup
In,mCn−M0

Tn,m
≤ 1, (4.18)

Also, by the Stirling’s formula for the factorials,

Cn−M0
∼ 4−M0 · Cn = exp(−M0 log 4)Cn. (4.19)

Combining (4.18) and (4.19), with small enough ε, and Lemma 4.1 we complete the proof.

Remark 4.5. A closer look shows that, in fact, M(x) is asymptotic to (m/n) log n in probability, and that P(M(x) ≤
(1 − ε)(m/n) log n) ≤ exp(−cnε), which is much smaller than exp(−Θ(m/n)). Thus the choice of M0 in (4.18) is

asymptotically the best possible if we want the fraction In,m,M0
/In,m to be at least e−bm/n for some constant b > 0;

here the In,m,M0 denotes the number of permutations with m inversions and maxxi ≤M0.

Remark 4.6. Our, admittedly limited, numerical experiments seem to indicate that, for m = Θ(n log n), Tn,m is

at least of order e−b(m/n)Cn
(
n+m−1
n−1

)
for some constant b > 0, a bound that matches qualitatively the asymptotic

formula for Tn,m for m < (2/π2)n log n in Lemma 3.4. However, the exponential factor in the lower bound (4.14)

is much smaller, namely e−Θ((m/n)2). So far we have not been able to replace this factor by anything substantially

larger. At the moment, it seems that n3/2 is actually the threshold value of m for validity of the lower bound. Here

is a quick-and-dirty argument to lend some support for this conjecture. A pair (x,y) determines a chord diagram if

and only if the condition (4.16) is satisfied. For a typical Catalan sequence y, we have

max
0≤k<n

{yn−k + yn−k+1 + · · ·+ yn − (k + 1)} = O(
√
n).

On the other hand, an average xi is of order m/n, which is much larger than
√
n for m � n3/2. Consequently, the

probability that (4.16) is satisfied for a random x and a random y is extremely small. However, we do not know how

to handle non-typical Catalan sequences; so we cannot exclude the possibility that the conjecture is false.

Remark 4.7. By (4.13), for x, y > 0,

T (x, y) =
∑
m,n

Tn,mx
myn ≤

∑
m,n

(
n+m− 1

n− 1

)
Cnx

myn

=
∑
n

ynCn
∑
m

xm
(
n+m− 1

n− 1

)
.
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For x < 1, the innermost series converges to (1 − x)−n, and then the double series converges to C(y/(1 − x)) if

y/(1 − x) < 1/4. Therefore, we have an elementary proof that the bivariate generating function series T (x, y)

converges if x, y > 0 and y/(1− x) < 1/4.

Here is an illustration of the power of the upper bound (4.13) combined with Lemma 3.3. Consider again the

uniformly random linearized chord diagram on [2n] with m crossings. For a cut K = [2n1] ∪ ([2n] \ [2n1]), we set

n2 = n− n1, define |K| = min{n1, n2}, and finally define Yn,m = maxK |K|.

Lemma 4.8. If m = O(n) then Yn,m is bounded in probability.

Proof. Given n1 + n2 = n and m1 + m2 = m, where n1, n2 > 0, the expected number of cuts with parts [2n1]

and [2n1 + 1, 2n], and the number of crossings in the left subdiagram and the right subdiagram equal m1 and m2,

respectively, is

Zn,m :=
Tn1,m1

Tn2,m2

Tn,m
,

where n = (n1, n2) and m = (m1,m2). By Lemma 3.3,

Tn,m ∼
(
n+m− 1

n− 1

)
Cn
∏
j≥1

(1− qj)3,

and, by (4.13),

Tni,mi ≤
(
ni +mi − 1

ni − 1

)
Cni , i = 1, 2.

Hence,

Zn,m ≤b

∏
i

(
ni+mi−1
ni−1

)
Cni(

n+m−1
n−1

)
Cn

≤
∏
i

(
ni+mi
ni

)
Cni(

n+m
n

)
Cn

.

Therefore, since Cν = Θ
(
ν−3/24ν

)
,

Zn,m ≤b
n3/2

n
3/2
1 n

3/2
2

·
∏
i

(
ni+mi−1
ni−1

)(
n+m−1
n−1

) . (4.20)

Observe that ∑
m:m1+m2=m

∏
i

(
ni +mi − 1

ni − 1

)
=

(
n+m− 1

n− 1

)
.

Indeed, the RHS is the total number of non-negative integer solutions of

n1∑
j=1

xj +
n∑

j=n1+1

xj = m,

and each such solution is a pair (x1, . . . , xn1
), (xn1+1, . . . , xn1+n2

) of solutions, each of the corresponding equation

n1∑
j=

xj = m1,
n∑

j=n1+1

xj = m2,

for the unique choice of m1, m2 satisfying m1 +m2 = m. So summing (4.20) over m, we get∑
m:m1+m2=m

Zn,m ≤b
n3/2

n
3/2
1 n

3/2
2

.

Consequently, as A→∞,

P(Yn,m ≥ A) ≤
∑

n:min{n1,n2}≥A

∑
m:m1+m2=m

Zn,m

≤b n3/2
∑

min{n1,n2}≥A

n
−3/2
1 n

−3/2
2

≤b
∑

A≤n1≤n/2

n
−3/2
1 = O(A−1/2)→ 0.
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5. The Largest Component

We now turn our attention to the component sizes of chord diagrams with given number m of crossings. Through-

out this section, unless otherwise stipulated, we will assume that m satisfies the condition (3.16) with ` = 1, so that

Tn,m is given by the asymptotic formula (3.17) with ` = 1.

Like the classic case of the Erdős-Rényi random graph, (Bollobás [11]), we need a usable bound for Cν,µ, the total

number of connected chord diagrams on [2ν] with µ crossings. {Cν,µ} and its bivariate generating function C(x, y)

below will, hopefully, not be confused with the Catalan number Cn and its generating function C(y). It was first

found by Dulucq and Peanud [23] (see also Stanley [44, Exercise 5.46]) that

Cν,ν−1 =
1

2ν − 1

(
3ν − 3

ν − 1

)
,

and it was proved in [1] that

Cν,ν = 2 +

min(6,ν−3)∑
j=1

ν

3

(
6

j

)
j

ν − 3

(
3ν − 9

ν − 3− j

)
+ 2

ν−1∑
k=4

ν

k

min(ν−k,2k)∑
j=1

j

ν − k

(
2k

j

)(
3ν − 3k

ν − k − j

)
.

Using

j

(
d

j

)
= d

(
d− 1

j − 1

)
,
∑
j

(
a

j

)(
b

c− j

)
=

(
a+ b

c

)
,

the above formula is simplified to

Cν,ν = 2 +

(
3ν − 4

ν − 3

)
+ 2

ν−1∑
k=4

(
3ν − k − 1

2ν − 1

)
.

Thus, as ν →∞,

Cν,ν−1 ∼
2

33
ν−1

(
3ν

ν

)
, Cν,ν ∼

22

34

(
3ν

ν

)
.

We conjecture that, more generally, for µ = O(ν),

Cν,µ = νµ−ν+o(ν)

(
3ν

ν

)
.

For a chord diagram D, we call the component of D that contains point 1, the root component. The endpoints of

the root component’s chords determine pairwise disjoint arcs, each of which contains a chord diagram, possibly an

empty one. Note that we cannot have any chord joining two points from two different arcs, as otherwise, that chord

would belong to the root component. If D has parameters (n,m), the root component has parameters (ν, µ), and

the 2ν diagrams determined by the root component have parameters (n1,m1), . . . , (n2ν ,m2ν), we have

n1 + · · ·+ n2ν = n− ν, m1 + · · ·+m2ν = m− µ.

Thus,

Tn,m =
∑
ν≥1

µ≥ν−1

Cν,µ
∑

n1+···+n2ν=n−ν
m1+···+m2ν=m−µ

2ν∏
j=1

Tnj ,mj .

Setting C0,0 = 1, we get

∑
n,m

Tn,mx
myn = 1 +

∑
ν,µ

Cν,µxµyν
∑

n1+···+n2ν>0
m1,...,m2ν≥0

2ν∏
j=1

Tnj ,mjx
mjynj

=
∑
ν,µ

Cν,µxµyν
 ∑
n1≥0,m1≥0

Tn1,m1
xm1yn1

2ν

.
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Equivalently,

T (x, y) = C(x, yT 2(x, y)), (5.1)

where C(x, y) :=
∑
µ,ν Cν,µxµyν denotes the bivariate generating function for the sequence {Cν,µ}. For x = 1 we get

the identity proved earlier by Flajolet and Noy [27].

Equation (5.1) implies a Chernoff-type bound for Cν,µ:

Cν,µ ≤
T (x, y)

xµyν [T (x, y)]2ν
, ∀x < 1, y <

1− x
4

. (5.2)

Since T (x, y) increases with y, the best estimate, for a given x < 1, is obtained by letting y ↑ (1− x)/4. From (3.1),

and C(1/4) = 2, it follows that

lim
y↑(1−x)/4

T (x, y) = 2f(x), f(x) =
∑
j≥0

(−1)jx(j+1
2 ).

Using these and 1− x < f(x) < 1 in (5.2), we obtain

Cν,µ ≤
2f(x)

xµ(1− x)νf(x)2ν
≤ 2

xµ(1− x)3ν
, ∀x < 1.

The RHS is minimized at x = µ/(3ν + µ), and we get

Cν,µ ≤ 2
(3ν + µ)3ν+µ

(3ν)3νµµ
. (5.3)

In particular,

Cν,ν−1 ≤b
(4ν − 1)4ν−1

(3ν)3ν(ν − 1)ν−1
≤b ν1/2

(
4ν

ν

)
,

similar to, but noticeably worse than the exact formula for the number of trees, which is 1
2ν−1

(
3ν−3
ν−1

)
. For µ/ν large,

we get a bound better than (5.3) by using the obvious inequality Cν,µ < Tν,µ and (4.13):

Cν,µ ≤ Cν
(
µ+ ν − 1

ν − 1

)
≤b

4ν

ν2
· (µ+ ν)µ+ν

µµνν
≤ 4ν

(µ+ ν)µ+ν

µµνν
. (5.4)

Combining (5.3) and (5.4), we obtain

Cν,µ ≤b min

{
4ν

ν2
· (µ+ ν)µ+ν

µµνν
,

(3ν + µ)3ν+µ

(3ν)3νµµ

}
. (5.5)

In combination with the bounds on Tn,m, these enumerative results will enable us to gain an insight into the

component structure of the random intersection graph, and to prove eventually the main result on formation of its

giant component.

Lemma 5.1 (Crossing-density gap). Define the crossing density of a chord diagram as the ratio of its number of

crossings to the number of chords. Let α be a constant greater than 4e2 and let β = 5
logα−log(4e2) . For crossing

density m/n exceeding α, whp, the intersection graph has no component of size above β log n whose crossing density

is below m/(αn).

Proof. Let Xν,µ denote the number of components with parameters ν and µ in a random circular diagram with n

chords and m crossings. We first bound the expected number of Xν,µ. The probability Pν,µ that the root component

has parameters (ν, µ) is given by

Pν,µ =
Cν,µ
Tn,m

∑
n1+···+n2ν=n−ν
m1+···+m2ν=m−µ

2ν∏
j=1

Tnj ,mj =
Cν,µ
Tn,m

[xm−µyn−ν ]T (x, y)2ν .
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By cyclic symmetry,

E[Xν,µ] = Pν,µ
n

ν
=

n Cν,µ
ν Tn,m

[xm−µyn−ν ]T (x, y)2ν . (5.6)

Let us see what we can get from (5.6). By (3.1),

[xm−µyn−ν ]T (x, y)2ν ≤
[
C(y/(1− x))A(x, 1− C(y/(1− x)))

]2ν
xm−µyn−ν

,

for all x < 1, y < (1 − x)/4. Letting y ↑ (1 − x)/4, using C(1/4) = 2 and A(x,−1) = f(x) ≤ 1, and setting

x = (m− µ)/(m− µ+ n− ν), we obtain

[xm−µyn−ν ]T (x, y)2ν ≤ 4n
1

xm−µ(1− x)n−ν

= 4n
(m− µ+ n− ν)m−µ+n−ν

(m− µ)m−µ(n− ν)n−ν
.

Consequently, the identity (5.6) yields

E[Xν,µ] ≤ n Cν,µ
4n

Tn,m

(m− µ+ n− ν)m−µ+n−ν

(m− µ)m−µ(n− ν)n−ν
. (5.7)

Now, by Lemma 3.4,

Tn,m ≥b
(
n+m− 1

n− 1

)
Cn exp

(
− π2

2(1− q)

)
, q :=

m

m+ n
,

provided that

m ≤ 2n

π2

(
log n− (3/2) log log n− ω(n)

)
, (5.8)

where ω(n)→∞ however slowly. For such an m, we have

exp
(

π2

2(1−q)

)
≤ n

log n
and

(
n+m− 1

n− 1

)
≥
(
n+m
n

)
log n

.

Using the two inequalities above and Stirling’s formula for the Catalan number Cn, (5.7) becomes

E[Xν,µ] ≤b
n7/2 · Cν,µ(

n+m
n

) · (m− µ+ n− ν)m−µ+n−ν

(m− µ)m−µ(n− ν)n−ν
.

Now, using

c b−1/2 bb

aa(b− a)b−a
≤
(
b

a

)
≤ bb

aa(b− a)b−a
,

c > 0 being an absolute constant, and log-concavity of f(a, b) := bb

aa(b−a)b−a
, we replace the last bound with a cruder

version. Namely, if m satisfies the inequality (5.8), then

E[Xν,µ] ≤b n4Cν,µ
nνmµ

(n+m)ν+µ
(5.9)

uniformly for all ν ≤ n and ν − 1 ≤ µ ≤ m, or using (5.4),

E[Xν,µ] ≤b n4 4ν

ν2

(µ+ ν)µ+ν

µµνν
nνmµ

(n+m)ν+µ

=n4 (4ν/ν2)F (µ/ν,m/n)ν ,

F (x, y) :=
(1 + x)1+x

xx
· yx

(1 + y)1+x
.

(5.10)
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Let y = m/n ≥ α with α > 4e2, and x = µ/ν ≤ y/α. Taylor-expanding z log z about z = x and using x ≥ (ν − 1)/ν,

logF (x, y) = (1 + x) log(1 + x)− x log x+ x log y − (1 + x) log(1 + y)

≤ (1 + log x) +
1

2x
− log y ≤ 2 + log x− log y = log

xe2

y

≤ log
ye2

αy
= log

e2

α
< log

1

4
.

So (5.10) becomes:

E[Xν,µ] ≤b n4ρν/ν2, ρ :=
4e2

α
,

uniformly for all µ ≥ ν − 1 with µ/ν ≤ α−1m/n. For β = −5/ log ρ,∑
ν≥β logn, µ/ν≤α−1m/n

E[Xν,µ] ≤b n4(m/n)
∑

ν≥β logn

ρν/ν

≤b n4 log n · ρβ logn/ log n = 1/n→ 0.

Lemma 5.1 shows that, for the random diagram with density m/n sufficiently large, whp there are no components

of size Ω(log n) with density smaller by a constant factor than m/n. We anticipate that, for m/n → ∞, whp there

exists a large component and that a likely candidate is a component with the maximum density. Let us focus on

such components. Given parameters ν and µ, let Aν,µ denote the event “there is a maximum density component

with ν chords and µ crossings”. Needless to say, on the event Aν,µ, the maximum density is µ/ν.

Lemma 5.2. Suppose m/n → ∞ and m satisfies (3.16) in Lemma 3.4. Let c ∈ (1, 2) be fixed. Define α =

7 max{log(1/ce−c), log(1/0.99)}. Then,

lim
n,m→∞

∑
ν,µ

P(Aν,µ) = 0, (5.11)

where the sum is over all pairs (ν, µ) such that

ν ≥ α log n, µ ≤ (2− c)m.

In words, it is very unlikely that the densest component has size exceeding α log n and that its number of crossings

scaled by m is strictly below 1.

Proof. Notice upfront that P(Aν,µ) = 0 if µ/ν < m/n. Thus, in (5.11), the terms of interest are those with

µ/ν ≥ m/n. As in the proof of Lemma 5.1, a component with parameters ν and µ induces the partition of the

remaining set of 2(n − ν) points into 2ν isolated subdiagrams with parameters nj ,mj , 1 ≤ j ≤ 2ν. If a chosen

component is of maximum density µ/ν, then, in addition, we must have mj/nj ≤ µ/ν. So, instead of (5.6), we

obtain

P(Aν,µ) ≤ n Cν,µ
ν Tn,m

[xm−µyn−ν ]Tµ/ν(x, y)2ν ,

where

Tµ/ν(x, y) := 1 +
∑

0<i/j≤µ/ν

Ti,jx
iyj .

Here

[xm−µyn−ν ]Tµ/ν(x, y)2ν ≤
Tµ/ν(x, y)2ν

xm−µyn−ν
, ∀x > 0, y > 0.

Let

x :=
m− µ

m− µ+ n− ν
, y :=

1

4
(1− x)
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and observe that x→ 1 from below since m− µ ≥ m(c− 1)� n. Similar to (5.9), we obtain

P(Aν,µ) ≤ n Cν,µ4n−ν

ν Tn,m

(m− µ+ n− ν)m−µ+n−ν

(m− µ)m−µ(n− ν)n−ν
Tµ/ν(x, y)2ν

≤b n44−νCν,µ
mµnν

(m+ n)µ+ν
Tµ/ν(x, y)2ν

≤ n4

ν2
· (µ+ ν)µ+ν

µµνν
· mµnν

(m+ n)µ+ν
Tµ/ν(x, y)2ν , (5.12)

where we use (5.4) in the last step. Let us bound the last factor in (5.12). Using the upper bound (4.13) in Lemma 4.4,

we have

Tµ/ν(x, y) ≤ 1 +
∑

0<i/j≤µ/ν

(
i+ j − 1

j − 1

)
Cjx

iyj

=
∑
i,j≥0

(
i+ j − 1

j − 1

)
Cjx

iyj −
∑
j>0

i/j>µ/ν

(
i+ j − 1

j − 1

)
Cjx

iyj

=: Σ1 − Σ2, (5.13)

Here

Σ1 =
∑
j≥0

Cjy
j
∑
i≥0

(
i+ j − 1

j − 1

)
xi

=
∑
j≥0

Cjy
j(1− x)−j =

∑
j≥0

Cj(1/4)j = C(1/4) = 2. (5.14)

Turn to Σ2. For a given j > 0, introduce i0 = i0(j) := min{i : i > jµ/ν}, and write∑
i>jµ/ν

(
i+ j − 1

j − 1

)
xi = xi0

∑
i≥i0

(
i+ j − 1

j − 1

)
xi−i0 := xi0 Σ∗2.

We are going to use Abelian summation by parts to bound Σ∗2 from below. Using

a+N−1∑
b=a

(
b

a

)
=

(
a+N

a+ 1

)
,

we have: for N > 0,

SN,j :=

i0+N−1∑
i=i0

(
i+ j − 1

j − 1

)
=

i0+N−1∑
i=0

(
i+ j − 1

j − 1

)
−
i0−1∑
i=0

(
i+ j − 1

j − 1

)
=

(
i0 + j +N − 1

j

)
−
(
i0 + j − 1

j

)
,

and S0,j = 0. Using (
i+ j − 1

j − 1

)
= Si−i0+1,j − Si−i0,j ,

we get

Σ∗2 =
∑
i≥i0

[
Si−i0+1,j − Si−i0,j

]
xi−i0 = (1− x)

∑
i≥i0

Si−i0+1,jx
i−i0

= (1− x)
∑
i≥i0

[(
i+ j

j

)
−
(
i0 + j − 1

j

)]
xi−i0

≥ (1− x)
∑
i≥i0

(
i− i0 + j

j

)
xi−i0

= (1− x) · (1− x)−j−1 = (1− x)−j . (5.15)
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Explanation for the inequality above: For j ≥ 1, we have(
i0 + j − 1

j

)
≤
(
i0 + j

j

)
− 1 ≤

(
i+ j

j

)
−
(
i− i0 + j

j

)
,

where the last inequality follows from(
|A|
x

)
+

(
|B|
x

)
−
(
|A ∩B|

x

)
≤
(
|A ∪B|

x

)
for any two sets A and B and any nonegative integer x. (Take x = j and let A and B be two sets such that

|A| = i0 + j, |B| = i− i0 + j, |A ∩ B| = j.) As x → 1, we have xi0 = xjµ/ν(1 + O(1− x)). Using (3.3) and (5.15),

we have

Σ2 =
∑
j≥0

Cjy
jxi0(j)Σ∗2 ≥ (1 +O(1− x)))

∑
j≥0

Cjy
j

(
xµ/ν

1− x

)j
= (1 +O(1− x))

∑
j≥0

Cj(x
µ/ν/4)j = (1 +O(1− x))C(xµ/ν/4)

= (1 +O(1− x))
2

1 +
√

1− xµ/ν
. (5.16)

Combining (5.14) and (5.16) we transform (5.13) into

Tµ/ν(x, y) ≤ 2− (1 +O(1− x))
2

1 +
√

1− xµ/ν

=
2
√

1− xµ/ν

1 +
√

1− xµ/ν
· (1 +O(

√
1− x )). (5.17)

Using (5.17) we replace (5.12) with

P(Aν,µ) ≤b n4
[
Rν,µ + o(1)

]ν
/ν2, (5.18)

Rν,µ :=
4(1 + µ/ν)1+µ/ν (m/n)µ/ν

(µ/ν)µ/ν (1 +m/n)1+µ/ν
·

( √
1− xµ/ν

1 +
√

1− xµ/ν

)2

. (5.19)

Define X = µ/ν
m/n . Here, since µ/ν ≥ m/n→∞,

4(1 + µ/ν)1+µ/ν

(µ/ν)µ/ν
· (m/n)µ/ν

(1 +m/n)1+µ/ν
= 4X

(
1 + 1/(µ/ν)

)1+µ/ν ·
(
1− 1/(1 +m/n)

)1+µ/ν

= 4Xe1+o(1)−X(1+o(1)),

(5.20)

uniformly over X. We have two cases.

Case X ≥ c. Since √
1− xµ/ν

1 +
√

1− xµ/ν
≤ 1

2
,

we have

Rν,µ ≤ Xe1+o(1)−X(1+o(1)) ≤ ρ+ o(1), ρ := ce1−c < 1,

as c > 1. Thus,

P(Aν,µ) ≤b n4
[
Rν,µ + o(1)

]ν ≤ n4(ρ+ o(1))ν ,

so that ∑
ν,µ:X≥c

P(Aν,µ) ≤b
∑

ν≥α logn

∑
µ≥ν−1

n4(ρ+ o(1))ν

≤n6
∑
ν

(ρ+ o(1))ν ≤b n6(ρ+ o(1))α logn → 0,
(5.21)
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since α ≥ 7/ log(1/ρ).

Case X ≤ c. The function φ(z) =
√

1−z
1+
√

1−z is decreasing on (0, 1), so to find an upper bound for φ(xµ/ν), we

want to bound xµ/ν from below. We have

xµ/ν = exp
[
−(µ/ν)(1− x) +O((µ/ν)(1− x)2)

]
= exp

[
−(µ/ν)(1− x) +O(n/m)

]
.

Further, using

µ/ν −m/n ≤ (c− 1)(m/n), m− µ+ n− ν ≥ m− µ ≥ (1− c)m,

we compute

−µ
ν

(1− x) = −µ
ν
· n− ν
m− µ+ n− ν

= −X − µ

ν

(
n− ν

m− µ+ n− ν
− n

m

)
= −X − µ

ν
· nν(µ/ν −m/n)− n(n− ν)

(m− µ+ n− ν)m

≥ −X − µ

ν
· nν(µ/ν −m/n)

(m− µ+ n− ν)m

≥ −X − µ

ν
· nν(c− 1)(m/n)

(c− 1)m2

= −X − µ/m ≥ −c− (2− c) = −2.

Consequently, xµ/ν ≥ e−3, and φ(xµ/ν) ≤ φ(e−3) ≤ 0.494. Since Xe1−X is decreasing on (1,∞) and takes the value

1 for X = 1, we have

Xe1+o(1)−X(1+o(1)) ≤ 1 + o(1)

for 1 ≤ X ≤ c. Therefore,

Rν,µ ≤ 4× (0.495)2 ≤ 0.981

and

P(Aν,µ) ≤b n4
[
Rν,µ + o(1)

]ν ≤ n4(0.99)ν

As in the previous case, ∑
ν,µ:X≤c

P(Aν,µ) ≤b
∑
ν

∑
µ

n4(0.99)ν

≤ n6
∑
ν

(0.99)ν ≤b n6(0.99)α logn → 0,
(5.22)

since α > 7 log(1/0.99). The equations (5.21) and (5.22) imply that

lim
n→∞

∑
ν,µ:X≤c

P(Aν,µ) = 0.

Letting c ↓ 1, we arrive at

Corollary 5.3. Suppose m/n→∞ and m satisfies (3.16) in Lemma 3.4. Then whp

• either the densest component is of size O(log n),

• or its number of crossings is almost m, whence its size is at least (1 + o(1))
√

2m.
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Remark 5.4. This is a good place to notice that the sole reason for logn to appear in the first alternative was that

we confined ourselves to m = O(n log n) meeting the constraint (5.8), in which case Tn,m is bounded from below

by Cn
(
n+m−1
n−1

)
exp(−γ log n). For the constraint n log n � m � n3/2 we still have the lower bound (4.14) from

Lemma 4.4,

Tn,m ≥b exp
(
−Θ((m/n) logn)

)
Cn

(
n+m− 1

n− 1

)
.

To off-set this exponential factor, we could have confined ourselves to ν of order (m/n) logn, at least, arriving

at the counterpart of Corollary 5.3 with the first alternative becoming “either the densest component is of size

O((m/n) logn)”, but with the second alternative remaining unchanged. In other words, the gap property for the

crossing density of the densest component continues to hold for n log n� m� n3/2.

Now if m = Θ(n log n), and the densest component has size ν then for the number of crossings we have

ν(ν − 1)

2
≥ µ ≥ νm

n
,

implying ν ≥ 2m/n = Θ(log n). So, if ν = O(log n), that is, if the first alternative in Corollary 5.3 holds, then

ν = Θ(log n) and µ = Θ((log n)2), and the maximum density µ/ν is of order m/n exactly. This is the reason why

in the rest of the paper we continue to stick with m = Θ(n log n). Our goal is to eliminate, eventually, the case

ν = O(log n).

Lemma 5.5. Given fixed c ≥ 1, b > 1, let Bn,m = Bn,m(c, b) denote the event: the maximum density is below cm/n

and there is a (ν, µ)-component meeting the constraints

ν ≥ b log n, µ ≤ (1− b−1/3)m. (5.23)

For every c ≥ 1, there exists b = b(c) > 1 such that P(Bn,m)→ 0. Thus whp every component either has size below

b log n, or has at least (1− b−1/3)m edges.

Proof. First of all, in view of Lemma 5.1, by choosing b sufficiently large we can consider only (ν, µ)-components

with µ/ν ≥ dm/n, with some fixed d > 0. Also, for µ satisfying (5.23),

m− µ
n− ν

≥ mb−1/3

n
= Θ(b−1/3 log n)→∞.

Arguing as in the proof of Lemma 5.2, we obtain

P(Bn,m) ≤b n4
∑
ν,µ

[
Rν,µ(1 +O(b−1))

]ν
, (5.24)

where the sum is over all (ν, µ) satisfying (5.23), but instead of (5.19) we get

Rν,µ := 4
(1 + µ/ν)1+µ/ν

(µ/ν)µ/ν
· (m/n)µ/ν

(1 +m/n)1+µ/ν
·

( √
1− xcm/n

1 +
√

1− xcm/n

)2

≤ (1 + µ/ν)1+µ/ν

(µ/ν)µ/ν
· (m/n)µ/ν

(1 +m/n)1+µ/ν
.

Here as before

x = (m− µ)/(m− µ+ n− ν) = 1−O(b−1). (5.25)

(The remainder O(b−1) in (5.25) is the reason for the same remainder in (5.24).) Again, set X = µ/ν
m/n . Since

m/n→∞ and µ/ν →∞,

Rν,µ(1 +O(b−1)) ≤ Xe1−X+O(b−1),
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The log-concave function H(X) := Xe1−X attains its absolute maximum 1 at X = 1. Let A > 0 be a constant and

first consider the contribution of X’s with |X − 1| ≥ Ab−1/2. We have

max{H(X) : |X − 1| ≥ Ab−1/2} ≤ max
{
H(1−Ab−1/2), H(1 +Ab−1/2)

}
≤ exp

[
−A2/(3b)

]
.

Thus, for this range of X,

Rν,µ(1 +O(b−1)) ≤ exp
[
−A2/(4b)

]
if we choose A sufficiently large. So

n4 ·
∑

ν≥b logn

|X−1|≥Ab−1/2

[
Rν,µ(1 +O(b−1))

]ν ≤ n4 ·
∑

ν≥b logn

ν2 exp
[
−νA2/(4b)

]
→ 0,

if b(A2/(4b)) > 5, that is, if A2 > 20. The factor ν2 in the second sum is due to the fact that there are at most
(
ν
2

)
values of µ.

Now consider the contribution of (ν, µ) where |X − 1| ≤ Ab−1/2. We have

xcm/n = exp
[
−(1− x)cm/n+O((1− x)2m/n)

]
and

(1− x)
m

n
=

m

m+ n

[
1 +

ν(µ/ν −m/n)

m− µ+ n− ν

]
=

m

m+ n

[
1 +O(µb−1/2/(m− µ))

]
=

m

m+ n

[
1 +O(b−1/6)

]
= 1 + o(1).

Therefore, introducing ρ = 2
√

1−e−c
1+
√

1−e−c < 1, we obtain

Rν,µ(1 +O(b−1)) ≤ ρ
(
1 +O(b−1/6)

)
Xe1−X ≤ ρ1/2,

if b is large enough. We conclude that

n4
∑

ν≥b logn

|X−1|≤Ab−1/2

[
Rν,µ(1+O(b−1))

]ν ≤ n4
∑

ν≥b logn

ν2(ρ1/2)ν → 0,

if b is sufficiently large.

Lemma 5.6. Suppose that limn→∞m/(n log n) ∈ (0, 2/π2). Whp,

• either there exists a (necessarily unique) component that contains almost all m crossings, whence has at least

(1 + o(1))
√

2m vertices,

• or there is no component of size ν with ν/ log n exceeding a large constant.

Proof. It follows directly from Lemma 5.2 and Lemma 5.5.

If we rule out the second alternative, we will be able to claim that whp there is a component containing almost

all m crossings. To do so, we need some enumerative groundwork.

Given k, ` > 1 and s ≤ k, let Tn,m(k, `, s) denote the total number of diagrams with k components, each of size

not exceeding `, and with exactly s components of size 1, i.e. isolated chords. Obviously,

Tn,m(k, `, s) = 0 if `(k − s) < n− s. (5.26)
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Lemma 5.7. Introducing

Ij(x) :=
∑
µ≥0

Ij,µx
µ = (1 + x) · · · (1 + x+ · · ·+ xj−1),

we have:

max
`

Tn,m(k, `, s) ≤ (2n)k−1

(k − s)!s!
[xmyn−s]

 ∞∑
j=2

CjIj(x)yj

k−s

. (5.27)

Proof. For a generic diagram with parameters n and m, with k components, of size not exceeding `, and s components

of size 1, let sj denote the total number of components of size j; so s = (s1, s2, . . . , sn) meets the conditions:

s1 = s; (∀j > `) sj = 0;
n∑
j=2

sj = k − s;
n∑
j=2

jsj = n− s. (5.28)

For such a diagram to exist, it is necessary that the point sets of the components form a non-crossing partition of

[2n]. By Kreweras’ formula [32], the total number of such partitions is (2n)k−1/[s1!s2! · · · ]. In addition, for each

2 ≤ j ≤ n, and 1 ≤ t ≤ sj , let mj,t denote the number of crossings of the t-th component from the arbitrarly ordered

list of all components of size j. Clearly, m = {mj,t} meets the condition

n∑
j=2

sj∑
t=1

mj,t = m. (5.29)

Then,

Tn,m(k, `, s) ≤
∑

s meets (5.28)

(2n)k−1

s1! · · · sn!

∑
m meets (5.29)

∏
2≤j≤n
1≤t≤sj

Tj,mj,t

≤ 1

s!

∑
s meets (5.28)

(2n)k−1

s2! · · · sn!

∑
m meets (5.29)

∏
2≤j≤n
1≤t≤sj

CjIj,mj,t

=
(2n)k−1

s!

∑
s meets (5.28)

1

s2! · · · sn!
[xm]

n∏
j=2

Cj∑
µ≥0

Ij,mx
µ

sj

=
(2n)k−1

s!
[xm]

∑
s meets (5.28)

n∏
j=2

(CjIj(x))sj

sj !
. (5.30)

Here the last sum is at most

∑
s≥0∑

j≥2
jsj<∞

∞∏
j=2

(yjzCjIj(x))sj

sj !
= [yn−szk−s] exp

z∑
j≥2

yjCjIj(x)



= [yn−s]
1

(k − s)!

 ∞∑
j=2

yjCjIj(x)

k−s

.

(5.31)

Equations (5.30) and (5.31) imply (5.27), which finishes the proof.

Lemma 5.27 enables us to obtain an explicit bound for Tn,m(k, `, s). First of all, using

(1 + x)× · · · × (1 + x+ · · ·+ xj−1) = (1− x)−j(1− x) · · · (1− xj)
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we get: for k − s ≥ (n− s)/`,

Tn,m(k, `, s) ≤ (2n)k−1

(k − s)!s!
[xmyn−s]

 ∞∑
j=2

Cj

(
y

1− x

)j j∏
t=1

(1− xt)

k−s

.

The bivariate series on the RHS has positive coefficients, and converges for x ∈ (0, 1), y ∈ (0, (1 − x)/4]. So, by

Chernoff-type bound with x ∈ (0, 1) and y = (1− x)/4, we obtain

Tn,m(k, `, s) ≤ (2n)k−1

(k − s)!s!
x−my−(n−s)

(1− x)(1− x2)
∞∑
j=2

Cj
4j

j∏
t=3

(1− xt)

k−s

≤ 4n−s(2n)k−1

(k − s)!s!
x−m(1− x)−(n+s−2k)

[
1/4 +O(1− x)

]k−s
=

4n−k(2n)k−1

(k − s)!s!
x−m(1− x)−(n+s−2k)

[
1 +O(1− x)

]k−s
.

Choosing x = m/(m+ n) we get

Tn,m(k, `, s) ≤
(
k

s

)
4n−k(2n)k−1

k!
· (m+ n)m+n+s−2k

mmnn+s−2k

[
1 +O(n/(m+ n))

]k−s
. (5.32)

Lemma 5.8. Suppose that limm/(n log n) ∈ (0, 2/π2). Then whp there exists a component that has almost all m

crossings.

Proof. By Lemma 5.6, it suffices to prove that, for every A > 0, whp there is a component of size exceeding

` := A log n. Let X denote the total number of isolated chords in the random diagram; so X = X1,0, where Xν,µ is

as defined in the proof of Lemma 5.1). Clearly,

E[X ] ≤ 2n

Tn,m

∑
n1+n2=n−1
m1+m2=m

Tn1,m1
Tn2,m2

=
2n

Tn,m
[xmyn−1]T (x, y)2. (5.33)

Using (3.17) with ` = 2,

E[X ] ≤b n
(
n+m−2
n−2

)(
n+m−1
n−1

) =
n(n− 1)

n+m− 1
= O(n(log n)−1).

Hence whp X ≤ n/(log n)1−ε for any fixed ε ∈ (0, 1). Thus it suffices to show∑
k,s

Tn,m(k, `, s)

Tn,m
→ 0, (5.34)

where the sum is over all k, s such that

s ≤ s(n) :=
n

(log n)1−ε , k − s ≥ n− s
`

. (5.35)

(Indeed, Tn,m(k, `, s)/Tn,m is the probability that the diagram has k components, with exactly s components of size

1, and all other components of size not exceeding `.) Combining the asymptotic formula (3.17) for Tn,m in Lemma 3.4,

the bound (5.32) for Tn,m(k, `, s), and the constraints (5.35) we obtain:

Tn,m(k, `, s)

Tn,m
�
(

2n

k

)(
n

m+ n

)k+n/(2`)

≤ (2n)k

k!

( n
m

)k
×
( n
m

)n/(2`)
≤ exp

(
2n2/m

)
· exp

(
− n

2A log n
log(m/n)

)
≤ exp

(
O(n/ log n)− γ n log logn

log n

)
,
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γ > 0 being fixed. For the third line in the above inequality, we used yk/k! ≤ ey. The last quantity approaches 0

super-polynomially fast, so does the expression in (5.34).

Finally,

Theorem 5.9. Suppose that limm/(n log n) ∈ (0, 2/π2). Then whp there exists a component that has almost all m

crossings and a positive fraction of n chords.

Proof. Given ε, δ ∈ (0, 1), let Nδ,ε denote the total number of the (ν, µ)-components with ν ≤ δn and µ ≥ (1− ε)m.

In light of Lemma 5.8, it suffices to show that, for ε < 1/2, and δ sufficiently small, E[Nδ,ε]→ 0. Let δ < 1 be such

that

δ <
(1/2− e−1)(1− ε)

log(4e)
. (5.36)

By (5.10)

E[Nδ,ε] ≤b
∑

√
2µ≤ν≤δn
µ≥(1−ε)m

(n4/ν2) exp
[
νH(xν,µ)

]
, xν,µ :=

µ

ν
;

H(x) := log 4 + (1 + x) log
1 + x

1 +m/n
+ x log

m/n

x
.

Observe that, for ν, µ in question,

xν,µ ≥
m

n

1− ε
δ

> y :=
m

n

since 1− ε > δ. Further,

H(x) = log 4 + (1 + x) log
x

y
+ (1 + x) log

1 + 1/x

1 + 1/y
+ x log

y

x

≤ log 4 + log
x

y
+ (1 + x)

(
1 + 1/x

1 + 1/y
− 1

)
≤ log 4 + 1 + log

x

y
− x/y

1 + 1/y

≤ log(4e) + log
x

y
− 1

2

x

y

≤ log(4e)− (1/2− e−1)
x

y
,

the last inequality following from log z ≤ e−1z. Therefore

H(xν,µ) ≤ − γ(ε, δ),

γ(ε, δ) := (1/2− e−1)
1− ε
δ
− log(4e) > 0,

see (5.36). Therefore, as n→∞,

E[Nδ,ε] ≤b n4
∑
ν≥
√
m

exp
[
−νγ(ε, δ)

]
→ 0.

To complete the picture, turn now to m = Θ(n).

Theorem 5.10. If m ≤ n/14, then there exists a constant A > 0 such that whp the size of the largest component is

at most A log n.

Proof. Let A > 0 to be specified shortly. For En, the expected number of components of size exceeding A log n,

(by (5.10) again), we have

En ≤b n4
∑

ν≥A logn

∑
µ≥ν−1

ν−2 · exp
[
νH(xν,µ)

]
;
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here xν,µ = µ/ν ≥ 1− 1/(A log n). Since H(x) is concave,

H(xν,µ) ≤H(1) +H ′(1)(xν,µ − 1)

≤ log
16m/n

(1 +m/n)2
+O((log n)−1).

Now 16z/(1 + z)2 < 1 for 0 < z < z∗ := 7−
√

48 > 1/14. So if m/n ≤ 1/14, then

En ≤b n4m
∑

ν≥A logn

exp

[
ν

(
log

224

225
+O((log n)−1)

)]
→ 0,

if A > 5/(log 225/224).

6. Concluding Remarks

Although chord diagrams have been studied widely, there are still many open problems about them, particularly

of enumerative-probabilistic nature. The results presented in this paper provide partial solutions to some, in our

opinion interesting, problems. We conclude this paper with some questions for possible extensions of our results.

An asymptotic expression for the number Tn,m of chord diagrams with a given number of crossings has been

found in Theorem 3.4 for the case m < (2/π2)n log n, but its extension for larger m is still to be found. It would be

quite useful just to strengthen, and extend the bounds for Tn,m given in Lemma 4.4.

Our main goal in this paper was to observe a kind of phase transition for the largest component of a random chord

diagram. Theorem 5.9 tells us that when m/n log n has a limit in (0, 2/π2), there is a giant component containing

almost all the crossings (edges in the intersection graph) and a positive fraction of chords. In Erdős-Rényi graphs,

coupling G(n,m) with G(n,m + 1) with a graph process yields immediately that having a giant component is a

monotone property. While finding a similar coupling for chord diagrams is highly problematic, the existence of a

giant component (whp) for m = Ω(n log n) would follow from a much simpler claim, namely that the probability

of the giant component is monotone increasing with m. Judging by our experience with the random permutation

graph [3], it might be very helpful to prove that, for each n, the sequence {Tn,m} is log-concave, just like {In,m}.
Furthermore, it is still unclear whether whp there is a giant component for n� m = o(n log n).

Lastly, there are two other classes of graphs nontrivially related to chord diagrams: circle graphs and interlace

graphs. A (labeled) circle graph is obtained by labeling a set of chords of a circle, where the edges are determined

by the crossing relation. An interlace graph with vertex set [n] is obtained from a permutation of the multiset

{1, 1, 2, 2, . . . , n, n}, where two vertices i and j are adjacent if the corresponding symbols are interlaced in the per-

mutation, i.e. if the permutation looks like . . . i . . . j . . . i . . . j . . . or . . . j . . . i . . . j . . . i . . . As Arratia et al. [7] pointed

out, each circle graph is an interlace graph, and the number of interlace graphs is bounded above by the number

of permutations of the multiset, which is (2n)!/2n. A chord diagram corresponds to a standard permutation, in

which the first occurence of i is always before the first occurrence of j for all pairs i < j. However, the number of

interlace graphs of standard permutations is not the same as the number of intersection graphs due to the fact that

the same interlace graph might come from many different standard permutations, whereas the intersection graphs

that we consider uniquely determine the chord diagrams. For example, there are
(

2n
n

)
/(n+1) standard permutations

producing the empty graph on [n]. We are curious if the results in this paper hold for these two important classes of

graphs, or at least shed some light on the respective thresholds for the appearance of a giant component.
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